139 research outputs found

    The DRAO 26-m Large Scale Polarization Survey at 1.41 GHz

    Full text link
    The Effelsberg telescope as well as the DRAO synthesis telescope are currently surveying the Galactic polarized emission at 21 cm in detail. These new surveys reveal an unexpected richness of small-scale structures in the polarized sky. However, observations made with synthesis or single-dish telescopes are not on absolute intensity scales and therefore lack information about the large-scale distribution of polarized emission to a different degree. Until now, absolutely calibrated polarization data from the Leiden/Dwingeloo polarization surveys are used to recover the missing spatial information. However, these surveys cannot meet the requirements of the recent survey projects regarding sampling and noise and new polarization observation were initiated to complement the Leiden/Dwingeloo Survey. In this paper we will outline the observation and report on the progress for a new polarization survey of the northern sky with the 26-m telescope of the DRAO.Comment: 5 pages, 6 figure

    Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope

    Full text link
    Radio polarimetry at decimetre wavelengths is the principal source of information on the Galactic magnetic field. The diffuse polarized emission is strongly influenced by Faraday rotation in the magneto-ionic medium and rotation measure is the prime quantity of interest, implying that all Stokes parameters must be measured over wide frequency bands with many frequency channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a polarization transducer to deliver both hands of circular polarization, and a receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between 40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially available components, produces all Stokes parameters in 2048 frequency channels over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier Transform is applied to each data stream. Stokes parameters are then generated in each frequency channel. This instrument is in use at DRAO for a Northern sky polarization survey. Observations consist of scans up and down the Meridian at a drive rate of 0.9 degree per minute to give complete coverage of the sky between declinations -30 degree and 90 degree. This paper presents a complete description of the receiver and data acquisition system. Only a small fraction of the frequency band of operation is allocated for radio astronomy, and about 20 percent of the data are lost to interference. The first 8 percent of data from the survey are used for a proof-of-concept study, which has led to the first application of Rotation Measure Synthesis to the diffuse Galactic emission obtained with a single-antenna telescope. We find rotation measure values for the diffuse emission as high as approximately 100 rad per square metre, much higher than recorded in earlier work.Comment: Accepted for publication in The Astronomical Journa

    The local Galactic magnetic field in the direction of Geminga

    Full text link
    The Milagro hot spot A, close to the Galactic anticenter direction, has been tentatively attributed to cosmic rays from a local reservoir (at a distance ~100 pc), freely streaming along diverging and smooth magnetic field lines. This is at variance with the geometry of the ~kpc scale Galactic magnetic field, which is known to be aligned with the spiral arms. We investigate the information available on the geometry of the magnetic field on the scales (~100 pc) of relevance here. The magnetic field immediately upstream of the heliosphere has been investigated by previous authors by modeling the interaction of this field with the solar wind. At larger distances, we use the dispersion measure and the rotation measure of nearby pulsars (especially towards the third Galactic quadrant). Additional information about the local field towards the North Polar Spur is taken from previous studies of the diffuse radio emission and the polarization of starlight. The asymmetry of the heliosphere with respect to the incoming interstellar medium implies a magnetic field almost orthogonal to the local spiral arm, in the general direction of hot spot A, but more to the south. This is in good agreement with the nearby pulsar data on the one side, and the North Polar Spur data on the other. The local magnetic field on scales of ~100 parsecs around the Sun seems to be oriented so as to provide a direct connection between the Solar system and a possible site of the Geminga supernova; the residual angular difference and the shape and orientation of the Milagro hot spot can be attributed to the field trailing in the wake of the heliosphere.Comment: 5 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation

    Full text link
    We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC), to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength ~1 microgauss. Strong fluctuations in the magnetic field are also seen, on small (<0.5 parsecs) and large (~100 parsecs) scales. The significant bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies.Comment: 15 pages, including 3 embedded EPS figures (1 color, 2 b/w) plus supporting on-line material; uses scicite.sty. To appear in Science, vol 307, number 5715 (11 March 2005

    Faraday caustics: Singularities in the Faraday spectrum and their utility as probes of magnetic field properties

    Full text link
    We describe singularities in the distribution of polarized intensity as a function of Faraday depth (i.e. the Faraday spectrum) caused by line-of-sight (LOS) magnetic field reversals. We call these features Faraday caustics because of their similarity to optical caustics. They appear as sharply peaked and asymmetric profiles in the Faraday spectrum, that have a tail that extends to one side. The direction in which the tail extends depends on the way in which the LOS magnetic field reversal occurs (either changing from oncoming to retreating or vice versa). We describe how Faraday caustics will form three-dimensional surfaces that relate to boundaries between regions where the LOS magnetic field has opposite polarity. We present examples from simulations of the predicted polarized synchrotron emission from the Milky Way. We derive either the probability or luminosity distribution of Faraday caustics produced in a Gaussian magnetic field distribution as a function of their strength, F, and find that for strong Faraday caustics P(F)\proptoF^{-3} . If fully resolved, this distribution is also shown to depend on the Taylor microscale, which relates to the largest scale over which dissipation is important in a turbulent flow.Comment: 14 pages, 9 figures, Accepted for publication in Astronomy & Astrophysic

    Polarization surveys of the Galaxy

    Get PDF
    We report on sensitive 21cm and 11cm polarization surveys of the Galactic plane carried out with the Effelsberg 100-m telescope at arcmin angular resolution and some related work. Highly structured polarized emission is seen along the Galactic plane as well as up to very high Galactic latitudes. These observations reflect Faraday effects in the interstellar medium. Polarized foreground and background components along the line of sight, modified by Faraday rotation and depolarization, add in a complex way. The amplitudes of polarized emission features are highly frequency dependent. Small-scale components decrease in amplitude rapidly with increasing frequency. We stress the need for sensitive absolutely calibrated polarization data. These are essential for baseline setting and a correct interpretation of small-scale structures. Absolutely calibrated data are also needed to estimate the high-frequency polarized background. A recent study of polarized emission observed across the local Taurus-Auriga molecular cloud complexes indicates excessive synchrotron emission within a few hundred parsecs. These results suggest that possibly a large fraction of the Galactic high latitude total intensity and polarized emission is of local origin.Comment: 6 pages with 2 PS figures. To be published in "Astrophysical Polarized Backgrounds", eds. S. Cecchini, S. Cortiglioni, R. Sault and C. Sbarra, AIP Conf. Pro

    The Global Magneto-Ionic Medium Survey: A Faraday Depth Survey of the Northern Sky Covering 1280–1750 MHz

    Get PDF
    The Galactic interstellar medium hosts a significant magnetic field, which can be probed through the synchrotron emission produced from its interaction with relativistic electrons. Linearly polarized synchrotron emission is generated throughout the Galaxy and, at longer wavelengths, modified along nearly every path by Faraday rotation in the intervening magneto-ionic medium. Full characterization of the polarized emission requires wideband observations with many frequency channels. We have surveyed polarized radio emission from the Northern sky over the range 1280–1750 MHz, with channel width 236.8 kHz, using the John A. Galt Telescope (diameter 25.6 m) at the Dominion Radio Astrophysical Observatory, as part of the Global Magneto-Ionic Medium Survey. The survey covered 72% of the sky, decl. −30° to +87° at all R.A. The intensity scale was absolutely calibrated, based on the flux density and spectral index of Cygnus A. Polarization angle was calibrated using the extended polarized emission of the Fan Region. Data are presented as brightness temperatures with angular resolution 40′. Sensitivity in Stokes Q and U is 45 mK rms in a 1.18 MHz band. We have applied rotation measure synthesis to the data to obtain a Faraday depth cube of resolution 150 rad m−2 and sensitivity 3 mK rms of polarized intensity. Features in Faraday depth up to a width of 110 rad m−2 are represented. The maximum detectable Faraday depth is ±2 × 104 rad m−2 . The survey data are available at the Canadian Astronomy Data Centre

    Faraday Tomography of the North Polar Spur: Constraints on the distance to the Spur and on the Magnetic Field of the Galaxy

    Get PDF
    We present radio continuum and polarization images of the North Polar Spur (NPS) from the Global Magneto-Ionic Medium Survey (GMIMS) conducted with the Dominion Radio Astrophysical Observatory 26-m Telescope. We fit polarization angle versus wavelength squared over 2048 frequency channels from 1280 to 1750 MHz to obtain a Faraday Rotation Measure (RM) map of the NPS. Combining this RM map with a published Faraday depth map of the entire Galaxy in this direction, we derive the Faraday depth introduced by the NPS and the Galactic interstellar medium (ISM) in front of and behind the NPS. The Faraday depth contributed by the NPS is close to zero, indicating that the NPS is an emitting only feature. The Faraday depth caused by the ISM in front of the NPS is consistent with zero at b>50 degree, implying that this part of the NPS is local at a distance of approximately several hundred parsecs. The Faraday depth contributed by the ISM behind the NPS gradually increases with Galactic latitude up to b=44 degree, and decreases at higher Galactic latitudes. This implies that either the part of the NPS at b<44 degree is distant or the NPS is local but there is a sign change of the large-scale magnetic field. If the NPS is local, there is then no evidence for a large-scale anti-symmetry pattern in the Faraday depth of the Milky Way. The Faraday depth introduced by the ISM behind the NPS at latitudes b>50 degree can be explained by including a coherent vertical magnetic field.Comment: 9 pages, 8 figures, accepted for publication in ApJ. Some figures have been degraded to reduce sizes, for a high resolution version, see http://physics.usyd.edu.au/~xhsun/ms_nps.pd
    • …
    corecore